Quantitative Variable Distributions: Single Site, Anomaly Detection, Cross-Sectional Analysis

dc.contributorPatient-Centered Outcomes Research Institute
dc.contributor.authorPEDSnet
dc.contributor.authorWieand, Kaleigh
dc.contributor.authorDickinson, Kimberley
dc.contributor.otherPEDSnet Data Coordinating Center
dc.date.accessioned2025-08-05T18:11:36Z
dc.date.created2025-07-30
dc.description.abstractThis check provides raw data and visualizations to aid a user in evaluating whether the distribution of quantitative variables aligns with clinical expectations. It can summarize the distribution of a quantitative variable (like lab result values) or patient counts (like number of patients with an outpatient visit).
dc.description.abstract#### How to Access This Check 1. You may access the module's R package in [GitHub](https://github.com/ssdqa/https://github.com/ssdqa/quantvariabledistribution).<br> Or, run in R ```{r} install_github('ssdqa/https://github.com/ssdqa/quantvariabledistribution') ``` 2. Using the provided vignettes on GitHub or help in R, follow parameter input instructions for "Single Site", "Anomaly Detection", "Cross-Sectional" requirements.
dc.identifier.urihttps://hdl.handle.net/20.500.14642/1167
dc.publisherPEDSnet
dc.relation.urihttps://github.com/ssdqa/quantvariabledistribution
dc.rightsa CC-BY 4.0 Attribution license.
dc.rights.urihttp://creativecommons.org/licenses/by/4.0
dc.subjectPlausibility
dc.subjectBar Graph
dc.subjectEvent-Level Analysis
dc.subjectClinical Data Distributions
dc.subjectClinical Consistency
dc.subjectSelection Error or Bias Detection
dc.subjectInformation Density
dc.titleQuantitative Variable Distributions: Single Site, Anomaly Detection, Cross-Sectional Analysis
dspace.entity.typeDQCheck
local.description.rawThis check produces a raw data output containing 8 columns: <br> |Column |Data Type|Definition | |----------------|---------|--------------------------------------------------------------------------------------------| |`site` |character|the name of the site being targeted OR "combined" if multiple sites were provided | |`value_type`|character|the type of value being measured| |`outlier_type`|character|a string indicating whether the outlier is in the upper (positive) or lower (negative) direction| |`total_vals`|numeric|the total number of values| |`sd_threshold`|numeric|the number of standard deviations a value should fall in either direction of the mean to be considered an outlier| |`n_outlier`|numeric|the number of outlying values| |`prop_outlier`|numeric|the proportion of outlying values| |`output_function`|character|a string indicating the type of visualization that should be generated by qvd_output| {.dqcheck-table}
local.description.vizThis check outputs a bar graph visualizing the proportion of values that are considered outliers based on the number of standard devations they fall from the mean. The outliers are stratified by upper and lower outlier types so the user can differentiate between outliers above and below the mean.
local.dqcheck.requirementcohort
local.dqcheck.requirementqvd_value_file
local.dqcheck.requirementomop_or_pcornet
local.dqcheck.requirementmulti_or_single_site
local.dqcheck.requirementanomaly_or_exploratory
local.dqcheck.requirementage_groups
local.dqcheck.requirementsd_threshold
local.subject.flatPlausibility
local.subject.flatBar Graph
local.subject.flatEvent-Level Analysis
local.subject.flatClinical Data Distributions
local.subject.flatClinical Consistency
local.subject.flatSelection Error or Bias Detection
local.subject.flatInformation Density

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
qvd_ss_anom_cs.png
Size:
53.46 KB
Format:
Portable Network Graphics