Patient Records Consistency: Single Site, Anomaly Detection, Longitudinal Analysis

dc.contributorPatient-Centered Outcomes Research Institute
dc.contributor.authorPEDSnet
dc.contributor.authorWieand, Kaleigh
dc.contributor.authorBailey, Charles
dc.contributor.authorRazzaghi, Hanieh
dc.contributor.authorDickinson, Kimberley
dc.contributor.otherChildren's Hospital of Philadelphia
dc.date.accessioned2025-01-08T16:06:29Z
dc.date.created2024-12-17
dc.description.abstractThis check provides analyses to identify anomalous data across time at the level of a single site. The Patient Record Consistency module, part of the larger SSDQA ecosystem, tests the consistency of clinical data representation within a patient's record. The goal is to ensure that the patient's information is confirmatory and complete, such that two events that are expected to co-exist do both occur within the same patient (i.e. a leukemia diagnosis and chemotherapy).
dc.description.abstract#### How to Access This Check 1. You may access the module's R package in [GitHub](https://github.com/ssdqa/sourceconceptvocabularies).<br> Or, run in R ```{r} install_github('ssdqa/patientrecordconsistency') ``` 2. Using the provided vignettes on GitHub or help in R, follow parameter input instructions for "Single-Site", "Anomaly Detection", "Longitudinal Analysis" requirements.
dc.identifier.urihttps://pedsnet.org/metadata/handle/20.500.14642/930
dc.publisherPEDSnet
dc.relation.urihttps://github.com/ssdqa/patientrecordconsistency
dc.rightsa CC-BY Attribution 4.0 License.
dc.rights.urihttp://creativecommons.org/licenses/by/4.0
dc.subjectData Quality Check Categorizations::Data Quality Category::Concordance
dc.subjectData Quality Check Categorizations::Data Quality Category::Consistency
dc.subjectData Quality Check Categorizations::Dataset Evaluation Strategy::Data Source Comparison::Single Site Analysis
dc.subjectData Quality Check Categorizations::Dataset Evaluation Strategy::Data Anomaly Method
dc.subjectData Quality Check Categorizations::Dataset Evaluation Strategy::Temporal Evaluation::Longitudinal Analysis
dc.subjectData Quality Check Categorizations::Error Detection Approach::Data Quality Probe::Missing Expected Data
dc.subjectData Quality Check Categorizations::Error Detection Approach::Data Quality Probe::Misclassification Detection
dc.subjectData Quality Check Categorizations::Error Detection Approach::Clinical Probe::Confirmatory Clinical Data
dc.subjectData Quality Check Categorizations::Error Detection Approach::Clinical Probe::Clinical Consistency
dc.subjectData Quality Check Categorizations::Error Detection Approach::Data Quality Probe::Temporality Consistency Check
dc.subjectData Quality Check Categorizations::Dataset Evaluation Strategy::Data Visualization::Control Chart
dc.subjectData Quality Check Categorizations::Dataset Evaluation Strategy::Data Anomaly Method::Time Series Anomalies
dc.subjectData Quality Check Categorizations::Dataset Evaluation Strategy::Data Anomaly Method::Seasonal-Trend Decomposition Using LOESS
dc.titlePatient Records Consistency: Single Site, Anomaly Detection, Longitudinal Analysis
dspace.entity.typeDQCheck
local.description.rawThis check produces a raw data output containing 9 columns of data for analyses over annual intervals: <br> |Column |Data Type|Definition | |----------------|---------|--------------------------------------------------------------------------------------------| |`site` |character|the name of the site being targeted OR "combined" if multiple sites were provided | |`time_start` |date |the start of the time period being examined | |`time_increment`|character|the length of each time period | |`event_a_name` |character|the name of event A | |`event_b_name` |character|the name of event B | |`total_pts` |numeric |the total number of eligible patients in the cohort during the time period | |`stat_type` |character|string indicating the event combination of interest: A only, B only, both, or neither | |`stat_ct` |numeric |the count of patients meeting the criteria for stat_type in the time period of interest | |`prop_event` |numeric |the proportion of patients meeting the criteria for stat_type in the time period of interest| {.dqcheck-table} <br> It produces 11 columns of data for analyses over time of monthly or weekly intervals: <br> |Column |Data Type|Definition | |-------------------|---------|----------------------------------------------------------------------------------------------------------------| |`observed` |numeric |the original proportion of patients | |`season` |numeric |the seasonal component of the time series | |`trend` |numeric |the trend component of the time series | |`remainder` |numeric |the residual component after "season" and "trend" are removed from "observed" - target of anomaly detection | |`seasadj` |numeric |the adjusted seasonal component | |`anomaly` |character|a flag to indicate whether the proportion is an anomaly | |`anomaly_direction`|numeric |the direction of the anomaly (upper or lower) | |`anomaly_score` |numeric |the distance between the anomaly and the centerline | |`recomposed_l1` |numeric |the lower level bound of the processed time series used to identify lower outliers | |`recomposed_l2` |numeric |the upper level bound of the processed time series used to identify upper outliers | |`observed_clean` |numeric |the original proportion after the season and trend components have been removed and anomalies have been detected| {.dqcheck-table}
local.description.vizThis check's visual output depends on the time increment input by the user. <br><br>For yearly time increments, this check outputs a control chart that highlights anomalies in the proportion of patients per event category. A `P Prime` chart is used to account for the high sample size, which means that the standard deviation is multiplied by a numerical constant. Blue dots along the line indicate non-anomalous values, while orange dots are anomalies.Only one event category should be specified via the `event_filter` parameter to be displayed on the graph. Any of the four options seen in the other output may be chosen with `a`, `b`, `both`, or `neither`.<br><br>For smaller time increments (by month or smaller), seasonality can make it difficult to detect true anomalies in a time series. This output computes anomalies while ignoring seasonality and outputs 2 graphs: 1. A time series line graph with anomalies highlighted with a red dot. 2. A 4-facet time series line graph that demonstrates the decomposition of the anomalies to make it more clear how the anomalies were identified.
local.dqcheck.requirementcohort
local.dqcheck.requirementprc_event_file
local.dqcheck.requirementomop_or_pcornet
local.dqcheck.requirementmulti_or_single_site
local.dqcheck.requirementanomaly_or_exploratory
local.dqcheck.requirementage_groups
local.dqcheck.requirementpatient_level_tbl
local.dqcheck.requirementfu_breaks
local.dqcheck.requirementp_value
local.dqcheck.requirementtime
local.dqcheck.requirementtime_span
local.dqcheck.requirementtime_period
local.subject.flatSingle Site Analysis
local.subject.flatData Anomaly Method
local.subject.flatLongitudinal Analysis
local.subject.flatPerson-Level Analysis
local.subject.flatConcordance
local.subject.flatMissing Expected Data
local.subject.flatMisclassification Detection
local.subject.flatConfirmatory Clinical Data
local.subject.flatClinical Consistency
local.subject.flatExpected Clinical Event Representation
local.subject.flatConsistency
local.subject.flatTemporality Consistency Check
local.subject.flatControl Chart
local.subject.flatTime Series Anomalies
local.subject.flatSeasonal-Trend Decomposition using LOESS

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
prc_ss_anom_la_month1.png
Size:
228.39 KB
Format:
Portable Network Graphics
Loading...
Thumbnail Image
Name:
prc_ss_anom_la_month2.png
Size:
317.92 KB
Format:
Portable Network Graphics
Loading...
Thumbnail Image
Name:
prc_ss_anom_la_year.png
Size:
88.43 KB
Format:
Portable Network Graphics